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Abstract

This paper is concerned with steady-state heat conduction in rigid shell-like interphase regions. By analogy this work
may provide insight into related problems of electric, dielectric and magnetic behavior. Although the field equations for
three-dimensional linear Fourier heat condition are rather simple, the solution of problems in shell regions is signifi-
cantly complicated when the shell has a general geometry and variable thickness. Here, the problem of heat conduction
between confocal elliptical surfaces is solved within the context of the theory of a Cosserat shell. This problem is of
particular interest because the Cosserat solution can be compared with an exact solution and the influences of variable
shell thickness and strong variations of the temperature field through the shell’s thickness can be explored indepen-
dently. The results show that the Cosserat approach is reasonably accurate even for moderately thick shells, moderate
ellipticity, and moderately strong variation of the temperature through the shell’s thickness.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The response of composite materials to mechanical and thermal loads requires the solution of field equa-
tions in each material region as well as boundary conditions at common interfaces and at the outer bound-
aries of the composite. Sometimes the composite has components like particles and fibers which are covered
by thin coatings. Other times thin regions occur near common boundaries which have different properties
than the neighboring media either due to damage or chemical reactions caused by processes like gluing.
Such thin regions are called interphases (Hashin, 2001, 2002).
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Nomenclature

tangent vectors to the shell’s reference surface x
unit normal vector to the shell’s reference surface x
variable thickness of the shell
heat conduction coefficient
unit outward normal to the shell’s bottom surface
unit outward normal to the shell’s top surface
heat fluxes in the shell which require constitutive equations
normal component of the heat flux into the shell through its bottom surface
normal component of the heat flux out of the shell through its top surface
variable radius of curvature of the shell
position vector to points on the shell’s reference surface
position vector to points in the three-dimensional shell region
position vector to points on the shell’s bottom surface
position vector to points on the shell’s top surface
scalar related to the area of the shell’s bottom surface
scalar related to the area of the shell’s top surface
H/R normalized thickness of the shell
convected coordinates characterizing points on the shell’s reference surface
convected coordinate through the shell’s thickness
average temperature in the shell
three-dimensional temperature field in the shell
average temperature gradient (with respect to the thickness coordinate 6%) through the shell’s
thickness
temperature on the shell’s bottom surface
temperature on the shell’s top surface
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Most previous research has focused on replacing these interphases with imperfect interface conditions
which require continuity or specify values of jumps in relevant quantities in the neighboring media to
the interphase. Within the context of heat conduction, reference is made to the pioneering works of
Sanchez-Palencia (1970) and Pham Huy and Sanchez-Palencia (1974) and to the more recent discussions
by Benveniste (1987), Benveniste and Miloh (1986) and Miloh and Benveniste (1999), where a number
of references can be found. Within the context of elasticity theory mention is made of the work of Benve-
niste and Miloh (2001) which provides an asymptotic analysis of various imperfect interface conditions.

The work of Hashin (2001), related to heat conduction, and Hashin (2002), related to elasticity, differ
from previous work in that the response of the interphase is modeled using approximate shell-type equa-
tions for thin interphases. Within the context of elasticity, Benveniste and Miloh (2001) also showed con-
nections with specific shell-type approximations of the interphase region. More recently, Rubin and
Benvenste (2004) have used the theory of a Cosserat shell (Naghdi, 1972; Rubin, 2000) to model the
response of an elastic interphase. In this work, the Cosserat model treats the interphase as having finite
thickness and the boundary conditions are applied to the major surfaces of the shell. This is in contrast with
previous work which attempts to develop imperfect interface conditions applied to a single infinitesimally
thin interface surface. It was shown in Rubin and Benvenste (2004) that the Cosserat approach produces
excellent results for elasticity even for moderately thick interphases.
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This paper is concerned with heat conduction in rigid shell-like interphase regions. By analogy this work
may provide insight into related problems of electric, dielectric and magnetic behavior. Although the
field equations for three-dimensional linear Fourier heat condition are rather simple, the solution of pro-
blems in shell regions is significantly complicated when the shell has a general geometry and variable thick-
ness. Consequently, it is desirable to develop simplified approximate equations to characterize heat
conduction in general shells. Such equations have recently been developed (Rubin, 2004) where specific
attention has been focused on developing constitutive equations which satisfy restrictions that ensure con-
sistency with exact solutions for all constant temperature gradients and all shell geometries including vari-
able thickness. In Rubin (2004) problems for circular cylindrical shells and spherical shells with constant
thicknesses and constant curvatures were considered. It was shown that two other theories from the liter-
ature predict solutions which do not have the correct slope in the limit that the shell becomes vanishingly
thin. In contrast, the Cosserat theory predicts solutions which converge smoothly to the exact solution in
this limit. Moreover, it was shown that the Cosserat theory predicted reasonably accurate results relative to
exact solutions even for moderately thick shells with moderately strong temperature variations through the
thickness.

Here, the problem of heat conduction between confocal elliptical surfaces is solved within the context of
the theory of a Cosserat shell. This problem is of particular interest because the Cosserat solution can be
compared with an exact solution and the influences of variable shell thickness and strong variations of the
temperature field through the shell’s thickness can be explored independently. The results show that the
Cosserat approach is quite accurate even for moderately thick shells, moderate ellipticity, and moderately
strong variation of the temperature through the shell’s thickness. Also, mention is made of the recent work
by Chen (2004) on a confocally multicoated elliptical inclusion where exact solutions for antiplane shear
(analogous to heat conduction) have been obtained.

Section 2 summarizes the equations for steady-state heat conduction in a rigid Cosserat shell which were
developed in Rubin (2004). Section 3 presents the exact solution between confocal elliptical surfaces using
the formulation in Carslaw and Jaeger (1956). Specifically, the exact solution for general boundary condi-
tions is expressed in terms of a Fourier-type series. Section 4 develops the Cosserat solution for a typical
term in this series so that the results can be used to determine the accuracy of the Cosserat equations
for the entire exact solution. Finally, Section 5 presents a discussion and considers specific example pro-
blems which indicate that the Cosserat theory predicts reasonably accurate results even for moderately
thick shells and moderately strong temperature variations through the shell’s thickness.

2. Steady-state heat conduction in a rigid Cosserat shell

Within the context of the direct approach to the Cosserat theory of rigid heat conducting shells, the shell
is described by the position vector x to points on its middle surface and by its thickness H

{x(6%), H(6")}, (1)
which are both functions of two convected coordinates 6*. Throughout the text, indices denoted by Greek
letters take the values (1,2), indices denoted by Latin letters take the values (1,2, 3) and the usual summa-
tion convention over the range of the index is used for repeated indices, Also, the temperature field is char-

acterized by the average temperature 0 and average temperature gradient 03 through the thickness of the
shell

{0(0%), 05(07)}. (2)

Alternatively, within the context of the three-dimensional approach a material point in the shell is charac-
terized by the position vector x* and the temperature at that point is characterized by 6*, such that
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where a5 is the unit normal vector to the surface x, and the convected coordinate 0° through the thickness of
the shell should not be confused with the average temperature gradient 6;. Here, and throughout the text a
superposed (*) is used to denote quantities related to the exact three-dimensional solution which have the
same symbol in the Cosserat theory. Also, it is convenient to define the position vectors {X, X} to material
points on the bottom (6° = —H/2) and top (6° = H/2) surfaces of the shell, respectively. Furthermore, it is
convenient to define the temperatures {0, 0} on the shell’s bottom and top surfaces, respectively, such that

x(0) =x+ 0as, 0°(0) =0+ 6°0;,

N

(3a,b,¢)

X(@“):x—ga3, ﬁ:x—kgag, 9:9—%93, 9:9+%03. (4)

2 2

It then follows that the Cosserat quantities can be determined by the surface variables through the
equations

—_—

(X+X), H=a; (X—X), 0:%(@“9), 0y = — (0 —0). (5)

X ==
2
Moreover, it was shown in Rubin (2004) that the steady-state equations for heat conduction can be written
in the forms:

- 111 o 1 3 3o ~ 111 o 1 3 3o
q=7 |39+ q.a)} q= A{zq,a g\ —a), (6)
where g is the normal component of the heat flux into the shell through its bottom surface, ¢ is the normal
component of the heat flux out of the shell through its top surface, the heat fluxes

{d.a"} (7)
require constitutive equations which depend on the shell geometry (1) and depend linearly on the temper-
ature fields

{6417 03703,1}a (8)

where a comma denotes partial differentiation with respect to coordinates 0*. The tangent vectors a,, and the
normal a3 to the shell’s middle surface, the scalar a" 2, the reciprocal vectors a*, and the metric a*P are de-
fined by

a, =X,, a3= a*1/2(31 X ), a'? = |a; x a,|,

©)

al =a "?(ay, xa;), a’=a"*(ayxa), o’ =2a" a’

In addition, the quantities {a, &} in (6) and the unit outward normal vectors {n*,n"} are related to the shell’s
bottom and top surfaces, respectively, and are defined by

Sk H H =k ook

on :—<X—§a3>‘] X <X—Ea3>‘2, n-n" =1,
A Ak H H A % A~k

on’ = <X+533)41 X <X+Ea3>2, n-n =1.

Also, the magnitude of the thickness H is limited by the condition that (3a) characterizes a one-to-one map-
ping between the convected coordinates 6 and material points in the shell. Specifically, H is limited by the
condition that

(10)

(a1 =+ 03311) X (az =+ 9333_’2) B ) = 0 (11)

which is required for all values of ¢'.
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In Rubin (2004) restrictions on the constitutive equations for (7) were developed which ensure that Egs.
(6) are consistent with the exact three-dimensional solution for an arbitrary constant three-dimensional
temperature gradient and arbitrary shell geometry including variable thickness. For Fourier heat conduc-
tion, the constitutive equations for {¢* ¢**} were specified by generalizations of Bubnov—Galerkin forms for
a plate

kH® )
¢ = —kH[ a0, g = a0y (12)
and the constitutive equation for {¢°} was modified so that the complete set of constitutive equations sat-
isfies these restrictions for shells

¢ = —kH[B*0,, + B*03),

H2 "y H ay o
B* — |:12( 1/200’33,0)3’7 +Z{H"Gal/2a "33,7 7H71(33‘2 X 33) 7H,2(a3 X 33.1)} -a’,

H* H? .
B = [al/z + 7(33,1 X a3, - a3) + ﬁ{(al/zag"aaa),, -z},

where k is the constant heat conduction coefficient. In particular, it can be seen that these restrictions are
nontrivial since ¢° requires a rather complicated dependence on the shell geometry. Further, in this regard,
it was shown in Rubin (2004) that these restrictions are not satisfied by three other models (Rubin, 1986;
Lukasiewicz, 1989; Hashin, 2001) for heat conduction in rigid shells.

In summary, Egs. (6) connect the heat fluxes through the shell’s bottom and top surfaces to derivatives of
the shell’s geometry {X, X} and the temperature fields {0, 0} on those surfaces through the constitutive equa-
tions (12) and (13).

3. Heat conduction between confocal elliptical surfaces: exact solution

The accuracy of the Cosserat theory in Section 2 was examined in Rubin (2004) by considering a number
of example problems which included heat conduction in plates, circular cylindrical and spherical regions.
However, all of these examples considered shells with constant curvature and constant thickness. In this
section the accuracy of the Cosserat theory is examined by considering the example of two-dimensional
heat conduction between two confocal ellipses. This example represents a severe test of the theory because
both the curvature and thickness of the shell are variable and extreme limiting cases can be considered and
compared with an exact solution.

Following (Carslaw and Jaeger, 1956, pp. 439-440) the position vector in a shell-like elliptical region can
be characterized by

x*(0') = x"(a,z, B) = ccosh(f) cos e, + csinh(f)sinae, +ze5, 0'=a, 0=z, 0 =84 (14)
Moreover, the boundaries of the elliptical regions are specified by
0<a<2r, —oco<z<oo, fi=79-0<P<Py=7+9, (15)

where ¢, y and ¢ are positive constants. For steady-state Fourier heat conduction the heat flux vector q*
satisfies the equations

Q= —kg', g =t divig =0, (16a,b,¢)
ox*
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where g* is the three-dimensional temperature gradient and div* is the divergence operator with respect
to x*.

In order to write expressions for the gradient and divergence operators in these elliptical coordinates it is
convenient to use Appendix A in Rubin (2000) to introduce the covariant base vectors g;, the scalar g% and
the reciprocal vectors g’ by the formulas

g, = X | = —ccosh(f)sinae; + csinh(f) cosae;, g, =X, = ey,

g; = X3 = csinh(f) cos ze; + ccosh(p) sin ae,,

g'? =g, x g, g = *[sinh’(f)cos’x + cosh’(f)sin’a], (17
g'’g! =g, x g; = —ccosh(p) sin ae; 4 ¢sinh(f) cos we,,

g'%g® = g, x g, = ?[sinh*(B)cos’« + cosh’(f)sin’a]e;,

g'%g® =g, x g, = csinh(p) cos ae; 4 ¢ cosh(f) sin xe;.

Then, it can be shown that
g* _ ngi, gl/zdiv*q* — ( l/2q* . gi).’i. (18)
In particular, it follows that for the two-dimensional problem under consideration

0" =0 (a0 ),
. 12 [00" , , a0 . ,
q" = —ckg B {—cosh(f) sin ze; + sinh(f) cosae, } + 5 {sinh(f}) cos xe| + cosh(f) sinwe,}|,

. 2’0" %"
gty =k [W + 6—/32} =0
(19)

Also, the values of {&,4} and the unit outward normals {n*,n"} to the shell’s bottom and top surfaces
[which are consistent with (10)] are given by

oan* = —X*(OC,Z, ﬁl) 1 X X*(OC,Z, BI)AZ = _C[Sinh(ﬁl) cos ae; + COSh(ﬁO sin OCez],

o= C\/sinhz(ﬁl)coszoc + cosh?(p, )sin’a,
20
40" = X (2. ,), % X' (.2, ,) , = clsinh(B,) cos ze, + cosh(By) sin o], 2

o= C\/sinhz(ﬁz)coszoc + cosh?(B,)sin’o
so that the normal component g* of heat flux into the shell through its bottom surface, and the normal com-
ponent ¢* of the heat flux out of the shell through its top surface become

00"
&q* = _q*(aaﬁl) com’ = _k@(d?ﬂlx

4" = o (2, By) - G = —k%—i(a, 5.

(1)

It was shown in Carslaw and Jaeger (1956, pp. 439-440) that an exact solution can be obtained in terms of a
Fourier series for any distribution of temperature on surfaces of the shell. Here, typical cases of this exact
solution are considered by taking
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B s 20)
0(ct) = 0° (e, By) = Op + O cos(ma), 0(ax) = 0°(at, By) = 0o + O cos(na), (22)
sinh{m(y +6—p)} _y+5—p sinh{n(f—y+9)} _f—-v+9

sinh(2md) 26 sinh(2n9) 20
where 6, is the constant reference temperature, m and n are integers, and the constants {@, @*} are the

Fourier coefficients of the temperature fields on the shell’s bottom and top surfaces, respectively. It then
follows that the exact heat fluxes can be expressed in the forms:

cos(na),

for m =0,

for n =0,

5g" = k[M ©" cos(ma) — N' @ cos(na)],

o, SO (23)
&g" = kM O cos(ma) — N O cos(na)],
where the constants {M ,N",M ,N } are given by
—x m —x n ~ % m ~ % n
= N=—"ro M= N=———r,
tanh(2md)’ sinh(2nd) sinh(2md) tanh(2nd)
1 1
" =— form=0, " " forn=0. (24)

tanh(2md) 20 sinh(2nd) 20

4. Heat conduction between confocal elliptical surfaces: Cosserat solution

Using (14) it follows that the position vectors {X,X} are given by
X(,2) = X" (a, B1,2),  X(2,2) =X (2, f,2) (25)
so that with the help of (5) the middle surface of the Cosserat shell can be taken in the form:
x = Acosoe; + Bsinoe, +ze;, 0'=a, 0=z, (26)

where the constant ¢ in (14) and the constants 4, B associated with the major and minor axes of the ellipse,
respectively, are defined so that

¢ = Asech(y)sech(0), g = tanh(y). (27a,b)

Thus, the value of y determines the ellipticity ratio B/A. Now, with the help of (9) the kinematics of the shell
become

a; = —Asinoe; + Bcosue,, a, = €3,
a; = a '*(Bcosue; + Asinae,), a'? = V A2sino + B’cos?a, (28)
a' =a '(—Asinae, +Bcosae,), a’=e;, a'=a' a?=0 da?=1
Also, using (5) it follows that the shell’s thickness H is given by
H = 2tanh(d)a'/?. (29)
Next, with the help of (5) and (22) the Cosserat temperature fields become

0:0(0():004—%(@4— 0), 03:03(@:%(@—@). (30)
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Thus, using the results
2 2\ o 1 2 2\ ,—1 :
a; = (4"—B%)sin(2a), H,; = E(A — B*)a™ 'H sin(2x) (31)
it follows that

1
) 3,1 :H

, _1[0® 06 1
.1—2

N 00 00
Oo  Ou

R cEx! (32)

- E (4> — B*)a " sin(20)

Consequently, with the help of (12), (29) and (32) it can be shown that

, 7’6 0
k e 6 33
K ranh? 12|00 00 (33)
g =~ Slank*(@)a | T2 -
k ~
- (4% — B*)tanh?(9)][(4> — B*)sin*(20) — 4a cos(2x)]a>*[O — @)].
Moreover, using (28) it follows that
a;; = a /*(—Bsinoe, + 4 cos xe,) — %a*m(A2 — B?)sin(2a)(B cos ce; + A sin oe,),
a3 - 31 = ABa’3/2,
(a?a"as,), = [—%az(Az — B?) sin(2a)(—B sin ae; + A cos xe,)
3042 p2y2ui2 22 p2 -1 . (34)
+{a (4" — B")7sin"(20) — a~ (4~ — B*) cos(2a) —a™ }(Bcosae, + Asinoey)|,
(@' a"as,),-a' = —%a%AB(A2 — B%)sin(2a),
(a'Pa"a,), a3 = E a (4> — B?)’sin®(24) — a~¥*(4> — B?) cos(20) — al/z] .
Thus, (13) and (30) yield
B* =0,
tanh’ (3 o
¢ = —k[l - %]a‘/z(@ - 0) (35)
- % (4% — BY)tanh?(9)][(4% — B?)sin®(2a) — 4a cos(2x)]a*(O — O).
It then follows that the Cosserat values of the heat fluxes (6) are given by
- 1 tanh?*(8)] ~ —. 2k 0’0 k GRC)
. 1 tanh’(0)], ~ —. Kk 0’0 2% 3’0
ag = —k {2 tanh(é)] [1 -3 } (6 —-0) +3 [tanh(J)] 23 [tanh ()] e

where the values of {&, &} in (10) are the same as those in (20) associated with the exact solution, and can be
obtained by using the definitions of {f;, >} in (15) and ¢ in (27).



M. B. Rubin | International Journal of Solids and Structures 43 (2006) 295-306 303
Also, with the help of (11), (28), (29), (34) it can be shown that

(a1 + 0333,1) X (32 + (‘)3332) sa3 = al/z[l + 036173/2143] = 0 (37)
so that for 0° = —H/2 the value of ¢ is limited by the condition
B a B
<tanh(d) <= <— forB<4, 6<y=tanh '(=
0 < tanh(9) 4 Sqg for , y = tan <A>’ (38a,b)
where use has been made of (27b). In particular, notice from (14) and (15) that when the equality holds in

(38b), the bottom surface (f = f; = 0) converges to the e;—e3 plane and the elliptical region is solid. More-
over, it can be shown that for the surface (26) the variable radius of curvature R is given by

113: —ay- (@ ay) @ ?, R(x) = a2 (39)
Consequently, with the help of (28) and (29) the normalized thicknesses can be defined so that
H(o) 2B
= =2tanh(d) < — for B < 4, 4
R() tanh(9) - for (40)

which is independent of the variable o. - R
For the special case when the temperature fields are specified by 0 and 0 in (22) it follows from (30) that

@ =0 cos(mz), @ =0 cos(nx), form>0andn >0 (41)

so that the heat fluxes (36) can be written in the forms:

8" = k[M © cos(ma) — N@ cos(nx)],
8G" = k[M® cos(ma) — NO cos(na)], “2)
where the constants {M,N, M, N} are given by
{2 tanh(0 ] [ " - tanhz(é)}7 N = [2ta;h(5)} {l - (2n23+ 1)tanh2(5)} )
{mnh } [ ta nhz(é)}, N= [m ;h ( 5)] {1 + (4”23_ l)tanhz(é)].

5. Discussion

Comparison of (23) with (42) indicates that the Cosserat solution preserves the character of the exact
solution for all Fourier coefficients of the temperature fields on the shell’s bottom and top surfaces. Only
the magnitudes {M, N, M,N } of the coefficients in the heat fluxes are approximate in the Cosserat solution.
Moreover, it can be shown that the Cosserat values (43) are the same as the exact values (24) form=n =1
and for general elliptical shells with arbitrary shell thickness [0 or « in (40)] and arbitrary ellipticity [y or
B/A in (27)]. This is a strong indication that the Cosserat theory can produce relatively accurate solutions
for shells with variable curvature and variable thickness.

It is well known that the notion of a shell being “thin” is not purely geometric. It actually requires the
variation of the important parameters through the shell’s thickness to remain relatively small. In this
regard, it is noted from (22) that the variation of the temperature field through the shell’s thickness
strengthens as the values of m and n increase. This means that the accuracy of the Cosserat theory
can be tested by this example problem in both the limits that the shell becomes geometrically thicker
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(increasing x) and in the limit that the temperature variation through its thickness becomes stronger
(increasing values of m and n).

Since the structure of the solutions for the temperature fields 0 and 0 are similar it is sufficient to consider
an example problem for which @" vanishes and the temperature remains constant on the shell’s bottom sur-
face. Moreover, it is convenient to use (24) and (43) to introduce the functions

E(éﬂ/l):%_L E(é7n):]/\\]*_la (44)

=)

which measure the error in the Cosserat predictions relative to the exact solution. As previously mentioned
these errors vanish for n =1 for all confocal elliptical shells satisfying the restriction (40)

E(6,1)=E(6,1) = 0. (45)
Also, for n =0 it can be shown that the errors remain very small for small values of ¢ since
E(5,0) = E(8,0) = 6 |coth(d) — % tanh(3)| — 1 ~ %54 +0(8%). (46)

Fig. 1 shows the geometry of two shells with x = 0.2 and two different values of ellipticity (B/4 = 0.5 in
Fig. la, and B/4 = 0.1 in Fig. 1b). In particular, it can been seen that both the local curvature and the nor-
mal thickness vary significantly for these shells especially near the tips of the major axis of the ellipses.
Fig. 2 plots the errors {E,E } in (44) versus the curvature x for two values of the Fourier coefficients
(n=75 in Fig. 2a and n =10 in Fig. 2b). Fig. 2c plots these errors versus the order n for the case of
k = 0.1. In particular, it can be seen that the magnitudes of the errors remain less than 2% for the case
of n =15 even for moderately thick shells with x = 0.2. As expected, the error increases with increasing x
or increasing n. From (22) it can also be seen that the function

-1.4 -0.7 0.0 0.7 1.4

0.70 | | |

0.35 4 (b) B/A =0.1; x=0.2

0004 T Lk

-0.35 4 =

-0.70 , , ,

-14 -0.7 0.0 0.7 14
x/IA

Fig. 1. Shapes of the shell for x = 0.2 and different values of ellipticity B/A.
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1004 (©x=01 i
—_ 00— L
X
= -100 A L
S .
= A
@ -20.0 E ot
3004 E b
-400 ; . - -
0 5 10 15 20

Fig. 2. Errors {E, E } in (44) as functions of the normalized thickness « in (40) associated with the Cosserat solution for different values
of n.

_sinh{a(f— 7 +9)}
S(B) = sinh(2n0) (47)

characterizes the variation of the exact temperature field through the thickness of the shell region. Fig. 3
plots this function f{B) for kx = 0.2 and different values of n and the ellipticity B/A [with y given by (38b)
and 0 given by (40)].

In summary, the example of heat conduction between two confocal elliptical surfaces has been consid-
ered to test the Cosserat theory developed in Rubin (2004) for heat conduction in a rigid shell of arbitrary
shape. Specifically, this example tests the Cosserat theory for a shell with both variable curvature and
variable thickness. As expected, the error in the Cosserat theory increases as the shell becomes thicker
and the variation of the temperature field through the shell’s thickness strengthens. However, the results
indicate that the Cosserat theory predicts reasonably accurate results even for moderately thick shells
and moderately strong temperature variations through the shell’s thickness.

1.0 s . 1.0 . -
K=0.2, B/A=0.5 . A
0s] @ L 0.8 L
_06] --ooene- L 06 a
= 2 -
041 L " 04 ’ n=5 |
R n=10
0.2 L 0.2 .
(b) ¥=0.2, BIA=0.1
0.0 - , 0.0 . :
0.4 05 g 06 0.7 0.0 0.1 8 0.2 0.3

Fig. 3. Values of the function f{ ) in (47) characterizing the variation of temperature through the thickness of the shell for k = 0.2 and
different values of n and the ellipticity B/A.
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